Copolymerization of Ethylene/1-Butene with Heterogeneous TiCl₄/(α-Diimine)nickel(II) Complex Combined Catalyst

Shao Quan LIN, Qi Xing ZHANG, Hai Hua WANG*

Institute of Polymer Science, Zhongshan University, Guangzhou 510275

Abstract: The new type heterogeneous combined catalyst system $TiCl_4$ -(α -diimine)nickel(II) complexes/MgCl_2-SiO_2/AlR₃ was prepared. Ethylene and 1-butene were copolymerized with the catalysts in slurry phase. It was found that with combined catalyst, the copolymers with lower density and higher branched degree were obtained. ¹³CNMR results showed that in the obtained copolymers existed not only ethyl but also some other kinds of branches due to the fact that ethylene exhibits the behavior of oligomerization and copolymerization *in-situ* with combined catalysts.

Keywords: Combined catalyst, oligomerization and copolymerization in-situ, copolymers.

In-reactor blending of two different catalysts may share the advantages of both^{1,2}. Ziegler-Natta catalysts are mature in industry, but a larger amount of comonomer has to be introduced in preparing low density polyethylene. Late transition metal catalysts have the advantage in preparing highly branched polyethylene³. While late transition metal catalyst has to be used with combination of MAO.

In this study, the new type combined catalyst system $TiCl_4$ -(α -diimine)nickel(II) complex/MgCl_2-SiO_2/AlR_3 was prepared based on the former described procedure⁴. The diimine compound (C₆H₅-N=C(CH₃)-C(CH₃)=N-C₆H₅)NiBr₂was prepared according to the reference⁵. Measured by ICP(Inductively Coupled Plasma), Ni content in the combined catalyst is $0.3 \sim 2.0\%$ (wt%) and Ti content is $0.6 \sim 1.2\%$ (wt%).

The combined catalysts were used in slurry copolymerization of ethylene/1-butene to synthesize low-density PE in the absence of MAO. The results of copolymerization were listed at the **Table 1**. Compared with single immobilized TiCl₄ catalyst(entry 1), the combined catalysts show higher catalytic efficiency in ethylene copolymerization. With same 1-butene content(entry 1,3,6,7), the molecular weight and the density are lower and branched degrees are higher in the resulting copolymers with combined catalyst. The branched degrees are even higher with more 1-butene content when catalyzed with the same catalyst(entry 2~5). The results in entry 6,3,7 indicate that with higher Ni/Ti ratio, the catalytic efficiencies decrease, but the branched degrees do not increase.

^{*} E-mail: ceswhh@zsu.edu.cn

Shao Quan LIN et al.

Entry	Ni/Ti (mol/mol)	1-butene (%)	<u>Cat. efficiency</u> gPE/g (Ni+Ti)·h	Mv (×10 ⁴)	Density g/cm ³	Branches/ 1000 C
1**	/	10	2295	7.45	0.934	10.4
2	1.04	5	5280	3.01	0.924	16.0
3	1.04	10	5619	1.46	0.913	34.3
4	1.04	15	5202	6.01	0.919	46.9
5	1.04	20	4221	1.78	0.918	55.1
6	0.32	10	8370	3.46	0.920	24.2
7	2.56	10	2446	1.74	0.927	24.8


 Table 1
 Copolymerization results of ethylene/1-butene with combined catalyst*

Polymerization reaction was cocatalyzed with AlEt₂Cl/Al(*i*-Bu)₃(1/1) hybrid catalyst, at first * AlEt₂Cl was introduced, after 0.5 h, Al(*i*-Bu)₃ was added to continue the reaction.

Polymerization condition: $M_{AI}/M(_{Ni+Ti})=100$, T=40 °C, t=1.5 h,P=106.7 kpa Ni/Ti was measured by ICP. Mv was calculated with $[\eta] = 6.67 \times 10^{-4} M_{\nu}^{0.67}$. Densities were determined in density gradient column. Branched degree was measured by IR spectrum.

**The polymerization was catalyzed with traditional TiCl₄ catalyst

¹³CNMR was recorded by Varian INOVA 500NB NMR at 120 °C in *o*-dichlorobenzene. Figure 1 and Figure 2 give the ¹³CNMR spectra of the copolymers obtained in entry 1 and 3. It can be seen that the microstructure of the copolymer prepared with combined catalyst is different from that with traditional Z-N catalyst. There is only ethyl branch in ethylene/1-butene copolymer with TiCl₄ catalyst. While with combined Ni-Ti catalyst, there are different kinds of branches: ethyl, butyl and longer branches (see Figure 2). This suggests that ethylene exhibited the property of oligomerization and copolymerization in-situ with the combined catalysts bearing Ti-Ni bimetal active sites⁶.

Acknowledgment

This project is supported by the National Natural Science Foundation of China(29874039) and the Foundation of Guangdong Province(001280).

Copolymerization of Ethylene/1-Butene with Heterogeneous TiCl₄/(α-Diimine)nickel(II) Complex

References

- S. Mecking, *Macromol. Rapid Commun.*, **1999**, *20*, 139.
 J. A. M. Canich, G. A. Vaughan, P. T. Matsunaga, D. E. Gindelberger, *et al.*, WO Patent Application 9748735 to Exxon, priority date June 17, **1996**.
- S. D. Ittel, L. K. Johnson, M. Brookhart, Chem. Rev., 2000, 100, 1169. 3.
- Z. M. WANG, W. XIAO, Q. X. ZHANG, *etal.*, *Chem. J. Chin. Univers.*, **1998**, *19* (2), 295.
 L. K. Johnson, C. M. Killian, M. Brookhart, *J. Am. Chem. Soc.*, **1995**, *117*, 6414.
 J. M. Hu, H. H. Wang, J. L. Wu, Q. X. Zhang, *Chin. Chem. Lett.*, **2000**, *11* (1), 85.

Received 31 January, 2002 Revised 10 February, 2003